

Abstracts

Modeling the Electromagnetic Field in Lossy Dielectrics Using Finite Elements and Vector Absorbing Boundary Conditions

V.N. Kanellopoulos and J.P. Webb. "Modeling the Electromagnetic Field in Lossy Dielectrics Using Finite Elements and Vector Absorbing Boundary Conditions." 1995 *Transactions on Microwave Theory and Techniques* 43.4 (Apr. 1995, Part I [T-MTT]): 823-827.

A new functional for the finite element method is described for the distribution of high-frequency electromagnetic fields in arbitrarily shaped, lossy dielectrics in 3D. The method uses a brick-shaped edge element (covariant-projection element) and a second-order, symmetric, vector absorbing boundary condition. Analytic solutions are available for the case of a plane wave incident on a lossy sphere, and these are used to show that the new method is capable of predicting the fields in and around the sphere to an average accuracy of 1-2%, even when the outer, absorbing boundary is no more than a third of a wavelength from the sphere.

[Return to main document.](#)